vietjack.com

ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Các bài toán về mặt phẳng và mặt cầu
Quiz

ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Các bài toán về mặt phẳng và mặt cầu

A
Admin
21 câu hỏiĐHQG Hà NộiĐánh giá năng lực
21 CÂU HỎI
1. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;−1) và tiếp xúc với mặt phẳng (α)  có phương trình 2x−2y−z+3=0. Bán kính của (S) là:

A.2

B. \[\frac{2}{3}\]

C. \[\frac{2}{9}\]

D. \[\frac{4}{3}\]

2. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?

A.\[x + y - 3z - 8 = 0\]

B. \[x - y - 3z + 3 = 0\]

C. \[x + y + 3z - 9 = 0\]

D. \[x + y - 3z + 3 = 0\]

3. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 2} \right)^2} = 4\] và 2 đường thẳng \({\Delta _1}:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 1 - t}\\{z = t}\end{array}} \right.\)và \({\Delta _2}:\frac{{x - 1}}{{ - 1}} = \frac{y}{1} = \frac{z}{{ - 1}}\). Một phương trình mặt phẳng (P) song song với \[{\Delta _1},{\Delta _2}\;\] và tiếp xúc với mặt cầu (S) là:

A.\[x + z + 3 - 2\sqrt 2 = 0\]

B. \[y + z - 3 - 2\sqrt 2 = 0\]

C. \[x + y + 3 + 2\sqrt 2 = 0\]

D. \[y + z + 3 + 2\sqrt 2 = 0\]

4. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−1;0),B(1;1;−1) và mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]. Mặt phẳng (P) đi qua A,B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:

A.\[x - 2y + 3z - 2 = 0\]

B. \[x - 2y - 3z - 2 = 0\]

C. \[x + 2y - 3z - 6 = 0\]

D. \[2x - y - 1 = 0\]

5. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 2)^2} + {(y + 1)^2} + {(z - 4)^2} = 10\] và mặt phẳng \[(P): - 2x + y + \sqrt 5 z + 9 = 0\;\]. Gọi (Q) là tiếp diện của (S) tại M(5;0;4) . Tính góc giữa (P) và (Q).

A.\({45^ \circ }\)

B. \({60^ \circ }\)

C. \({120^ \circ }\)

D. \({30^ \circ }\)

6. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 9\;\]và mặt phẳng  \[(P):2x - 2y + z + 3 = 0\]. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:

A.\[a + b + c = 5\]

B. \[a + b + c = 6\]

C. \[a + b + c = 7\]

D. \[a + b + c = 8\]

7. Nhiều lựa chọn

Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu  \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 64\;\]với mặt phẳng\[\left( \alpha \right):2x + 2y + z + 10 = 0\].

A.\[\left( { - \frac{7}{3}; - \frac{7}{3}; - \frac{2}{3}} \right)\]

B. \[\left( { - 2; - 2; - 2} \right)\]

C. \[\left( { - \frac{2}{3}; - \frac{7}{3}; - \frac{7}{3}} \right)\]

D. \[\left( { - \frac{7}{3}; - \frac{2}{3}; - \frac{7}{3}} \right)\]

8. Nhiều lựa chọn

Cho điểm A(0;8;2) và mặt cầu (S) có phương trình \[\left( S \right):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\;\]và điểm B(1;1;−9). Viết phương trình mặt phẳng (P) qua A tiếp xúc với (S) sao cho khoảng cách từ B đến (P) là lớn nhất. Giả sử \[\overrightarrow n = \left( {1;m;n} \right)\;\]là véctơ pháp tuyến của (P). Lúc đó:

A.\[mn = \frac{{276}}{{49}}\]

B. \[mn = - \frac{{276}}{{49}}\]

C. \[mn = 4\]

D. \[mn = - 4\]

9. Nhiều lựa chọn

Mặt phẳng (Oyz) cắt mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 2x - 2y + 4z - 3 = 0\] theo một đường tròn có tọa độ tâm là

A.(−1;0;0)

B.(0;−1;2)

C.(0;2;−4)

D.(0;1;−2)

10. Nhiều lựa chọn

Viết  phương trình mặt cầu có tâm I(−1;2;3) và tiếp xúc với mặt phẳng (P):2x−y−2z+1=0

A.\[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 2\]

B. \[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 3\]

C. \[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 4\]

D. \[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\]Trả lời:

11. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;2;1);B(3;2;3), có tâm thuộc mặt phẳng (P):x−y−3=0 , đồng thời có bán kính nhỏ nhất, hãy tính bán kính R của mặt cầu (S)?

A.1

B. \(\sqrt 2 \)

C. 2

D. \(2\sqrt 2 \)

12. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz,(α) cắt mặt cầu (S) tâm I(1;−3;3) theo giao tuyến là đường tròn tâm H(2;0;1) , bán kính r=2 . Phương trình (S) là:

A.\[{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 18\]

B. \[{\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 3} \right)^2} = 4\]

C. \[{\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 3} \right)^2} = 18\]

D. \[{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 4\]

13. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz , phương trình nào dưới đây là phương trình mặt cầu tâm I(−3;2;−4) và tiếp xúc với mặt phẳng (Oxz)?

A.\[{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 4} \right)^2} = 2\]

B. \[{\left( {x + 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 4} \right)^2} = 9\]

C. \[{\left( {x + 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 4} \right)^2} = 4\]

D. \[{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 4} \right)^2} = 16\]

14. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x + 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 25\]  và mặt phẳng \[(\alpha ):2x + y - 2z + m = \;0\]. Tìm các giá trị của m để \[\left( \alpha \right)\;\]và (S) không có điểm chung.

A. \(m < - 9\)hoặc \(m > 21\)

B. \( - 9 < m < 21\)

C. \[ - 9 \le m \le 21\]

D. \[m \le - 9\]hoặc \[m \ge 21\]

15. Nhiều lựa chọn

Mặt cầu (S) có tâm I(−1;2;−5) cắt mặt phẳng \[(P):2x - 2y - z + 10 = 0\;\]theo thiết diện là hình tròn có diện tích \[3\pi \]. Phương trình của (S) là:

A.\[{x^2} + {y^2} + {z^2} + 2x - 4y + 10z + 18 = 0\]

B. \[{(x + 1)^2} + {(y - 2)^2} + {(z + 5)^2} = 25\]

C. \[{(x + 1)^2} + {(y - 2)^2} + {(x - 5)^2} = 16\]

D. \[{x^2} + {y^2} + {z^2} + 2x - 4y + 10z + 12 = 0\]

16. Nhiều lựa chọn

Trong không gian vớ hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?

A.\[x + y - 3z - 8 = 0\]

B. \[x - y - 3z + 3 = 0\]

C. \[x + y + 3z - 9 = 0\]

D. \[x + y - 3z + 3 = 0\]

17. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \[(P):x - 2y + 2z - 3 = 0\;\]và mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 5 = 0\]. Giả sử \[M \in \left( P \right)\;\] và \[N \in \left( S \right)\;\] sao cho \(\overrightarrow {MN} \)cùng phương với vectơ \[\overrightarrow u = \left( {1;0;1} \right)\;\]và khoảng cách MN lớn nhất. Tính MN 

A.\[MN = 3\]

B. \[MN = 1 + 2\sqrt 2 \]

C. \[MN = 3\sqrt 2 \]

D. \[MN = 14\]

18. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z + 5 = 0\]. Tiếp diện của (S) tại điểm M(−1;2;0) có phương trình là:

A.2x+y=0                 

B.x=0 

C.y=0

D.z=0

19. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 6x - 4z + 9 - {m^2} = 0\]. Gọi T là tập các giá trị của m để mặt cầu (S) tiếp xúc với mặt phẳng (Oyz). Tích các giá trị của mm trong T bằng:

A.−5

B.5

C.0

D.4

20. Nhiều lựa chọn

Trong không gian Oxyz, cho đường thẳng \[\Delta :\frac{{x - 1}}{{ - 2}} = \frac{y}{2} = \frac{{z - 2}}{1}\;\] và mặt phẳng \[(P):2x - y + z - 3 = 0\]. Gọi (S) là mặt cầu có tâm I thuộc Δ và tiếp xúc với (P) tại điểm H(1;−1;0). Phương trình của (S) là:

A.\[{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\]

B. \[{\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\]

C. \[{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 6\]

D. \[{\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 6\]

21. Nhiều lựa chọn

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} - 8x + 2y + 2z - 3 = 0\;\]và đường thẳng \[\Delta :\frac{{x - 1}}{3} = \frac{y}{{ - 2}} = \frac{{z + 2}}{{ - 1}}\]. Mặt phẳng \[\left( \alpha \right)\;\]vuông góc với \[\Delta \] và cắt (S) theo giao tuyến là đường tròn (C) có bán kính lớn nhất. Phương trình \[\left( \alpha \right)\;\]là:

A.\[3x - 2y - z - 5 = 0\]

B. \[3x - 2y - z + 5 = 0\]

C. \[3x - 2y - z + 15 = 0\]

D. \[3x - 2y - z - 15 = 0\]

© All rights reserved VietJack