12 CÂU HỎI
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc \({60^ \circ }\)Tính khoảng cách d từ điểm D đến mặt phẳng (SBC).
A.\[d = \frac{{a\sqrt 3 }}{2}.\]
B. \[d = \frac{{\sqrt 3 }}{2}.\]
C. \[d = a.\]
D. \[d = a\sqrt 3 .\]
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên \(SA = \frac{{a\sqrt {15} }}{2}\) và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC).
A.\[d = \frac{{a\sqrt {285} }}{{19}}.\]
B. \[d = \frac{{\sqrt {285} }}{{38}}.\]
C. \[d = \frac{{a\sqrt {285} }}{{38}}.\]
D. \[d = \frac{{a\sqrt 2 }}{2}.\]
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC); góc giữa đường thẳng SB và mặt phẳng (ABC) bằng \({60^ \circ }\). Gọi M là trung điểm của cạnh AB. Tính khoảng cách d từ B đến mặt phẳng (SMC).
A.\[d = a\sqrt 3 .\]
B. \[d = \frac{{a\sqrt {39} }}{{13}}.\]
C. \[d = a.\]
D. \[d = \frac{a}{2}.\]
Cho hình lập phương ABCD,A′B′C′D′ có cạnh bằng 3a. Khoảng cách từ A′ đến mặt phẳng (ABCD) bằng
A.a
B.2a
C.\(\frac{a}{2}\).
D.3a
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh aa. Cạnh bên \(SA = a\sqrt 3 \) và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).
A.\[d = \frac{{a\sqrt {15} }}{5}.\]
B. \[d = a.\]
C. \[d = \frac{{a\sqrt 5 }}{5}.\]
D. \[d = \frac{{a\sqrt 3 }}{2}.\]
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)
A.\[d = \frac{{a\sqrt 7 }}{{\sqrt {30} }}.\]
B. \[d = \frac{{a\sqrt 7 }}{{\sqrt {30} }}.\]
C. \[d = \frac{a}{2}.\]
D. \[d = \frac{{a\sqrt 2 }}{2}.\]
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).
A.\[d = 1.\]
B. \[d = \sqrt 2 .\]
C. \[d = \frac{{2\sqrt 3 }}{3}.\]
D. \[d = \frac{{\sqrt {21} }}{7}.\]
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng \(\frac{{a\sqrt {21} }}{6}\). Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC) .
A.\[d = \frac{a}{4}.\]
B. \[d = \frac{{3a}}{4}.\]
C. \[d = \frac{3}{4}.\]
D. \[d = \frac{{a\sqrt 3 }}{6}.\]
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \[AD = 2BC,\;AB = BC = a\sqrt 3 \]. Đường thẳng SA vuông góc với mặt phẳng (ABCD). Gọi E là trung điểm của cạnh SC. Tính khoảng cách d từ điểm E đến mặt phẳng (SAD).
A.\[d = a\sqrt 3 .\]
B. \[d = \frac{{\sqrt 3 }}{2}.\]
C. \[d = \frac{{a\sqrt 3 }}{2}.\]
D. \[d = \sqrt 3 .\]
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) góc 300. Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a.
A.\[d = \frac{{2a\sqrt {21} }}{{21}}.\]
B. \[d = \frac{{a\sqrt {21} }}{7}.\]
C. \[d = a.\]
D. \[d = a\sqrt 3 .\]
Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật. Cạnh bên SA vuông góc với đáy, SA=AB=a và AD=x.a. Gọi E là trung điểm của SC. Tìm x, biết khoảng cách từ điểm E đến mặt phẳng (SBD) bằng \(h = \frac{a}{3}\).
A.1.
B.\(\sqrt 2 \).
C.2.
D.4.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) một góc \({30^0}\).Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a.
A.\(d = \frac{{2a\sqrt 5 }}{3}\)
B. \(d = \frac{{2a\sqrt {21} }}{{21}}\)
C. \(d = \frac{{a\sqrt {21} }}{7}\)
D. \(d = a\sqrt 3 \)