vietjack.com

10 câu  Trắc nghiệm Toán 10 chân trời sáng tạo Giải tam giác và ứng dụng thực tế có đáp án (Vận dụng)
Quiz

10 câu Trắc nghiệm Toán 10 chân trời sáng tạo Giải tam giác và ứng dụng thực tế có đáp án (Vận dụng)

A
Admin
10 câu hỏiToánLớp 10
10 CÂU HỎI
1. Nhiều lựa chọn

Cho ∆ABC thỏa mãn sin2A = sinB.sinC. Khẳng định nào sau đây đúng nhất?

A. a2 = bc;

B. \[\cos A \ge \frac{1}{2}\];

C. Cả A và B đều đúng;

D. Cả A và B đều sai.

Xem giải thích câu trả lời
2. Nhiều lựa chọn

Cho ∆ABC thỏa mãn \[\sin A = \frac{{\sin B + \sin C}}{{\cos B + \cos C}}\]. Khi đó ∆ABC là:

A. Tam giác vuông;

B. Tam giác cân;

C. Tam giác tù;

D. Tam giác đều.

Xem giải thích câu trả lời
3. Nhiều lựa chọn

Cho ∆ABC có a.sinA + b.sinB + c.sinC = ha + hb + hc. Khi đó ∆ABC là:

A. Tam giác cân;

B. Tam giác đều;

C. Tam giác thường;

D. Tam giác vuông.

Xem giải thích câu trả lời
4. Nhiều lựa chọn

Cho ∆ABC biết \(\frac{{{{\cos }^2}A + {{\cos }^2}B}}{{{{\sin }^2}A + {{\sin }^2}B}} = \frac{1}{2}\left( {{{\cot }^2}A + {{\cot }^2}B} \right)\). Khi đó ∆ABC là:

A. Tam giác cân;

B. Tam giác thường;

C. Tam giác đều;

D. Tam giác vuông.

Xem giải thích câu trả lời
5. Nhiều lựa chọn

Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C.

Media VietJack

Người ta đo được khoảng cách AB = 40 m, BC = 70 m, \(\widehat {CAB} = 45^\circ \). Vậy sau khi đo đạc và tính toán, ta được khoảng cách AC gần nhất với giá trị nào sau đây?

A. 35,7 m;

B. 30,6 m;

C. 92,3 m;

D. 41,5 m.

Xem giải thích câu trả lời
6. Nhiều lựa chọn

Từ vị trí A, người ta quan sát một cái cây cao mọc vuông góc với mặt đất như hình vẽ.

Media VietJack

Biết vị trí quan sát cách mặt đất một khoảng AH = 4 m và khoảng cách từ chân đường vuông góc của vị trí quan sát A trên mặt đất tới gốc cây là HB = 20 m, \(\widehat {BAC} = 45^\circ \). Chiều cao của cây gần nhất với giá trị nào sau đây?

A. 17,5 m;

B. 17 m;

C. 16,5 m;

D. 16 m.

Xem giải thích câu trả lời
7. Nhiều lựa chọn

Giả sử CD = h là chiều cao của tháp, trong đó C là chân tháp.

Media VietJack

Một người đứng tại vị trí A (\(\widehat {CAD} = 63^\circ ),\) không sang được bờ bên kia để đo chiều cao h của tháp nên chọn thêm một điểm B (ba điểm A, B, C thẳng hàng) cách A một khoảng 24 m và \[\widehat {CBD} = 48^\circ \] để tính toán được chiều cao của tháp. Chiều cao h của tháp gần nhất với:

A. 18 m;

B. 18,5 m;

C. 60 m;

D. 60,5 m.

Xem giải thích câu trả lời
8. Nhiều lựa chọn

Trên nóc một tòa nhà có một cột ăng-ten cao 5 m. Từ vị trí quan sát A cao 7 m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50° và 40° so với phương nằm ngang.

Media VietJack

Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

A. 12 m;

B. 19 m;

C. 24 m;

D. 29 m.

Xem giải thích câu trả lời
9. Nhiều lựa chọn

Từ hai vị trí A và B của một tòa nhà, người ta quan sát được đỉnh C của ngọn núi. Biết rằng độ cao của tòa nhà là AB = 70 m, phương nhìn AC tạo với phương ngang AH một góc bằng 30°, phương nhìn BC tạo với phương ngang BD một góc bằng 15°30’.

Media VietJack

Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

A. 135 m;

B. 234 m;

C. 165 m;

D. 195 m.

Xem giải thích câu trả lời
10. Nhiều lựa chọn

Khi khai quật một ngôi mộ cổ, người ta tìm được một mảnh của một chiếc đĩa phẳng hình tròn bị vỡ.

Media VietJack

Họ muốn làm một chiếc đĩa mới phỏng theo chiếc đĩa này bằng cách tìm ra bán kính của chiếc đĩa. Khi lấy ba điểm A, B, C bất kì trên cung tròn (mép đĩa) thì họ đo được AB = 2,56 cm; BC = 4,18 cm và AC = 6,17 cm. Khi đó bán kính của chiếc đĩa bằng khoảng:

A. 3,5 cm;

B. 3,988 cm;

C. 4,088 cm;

D. 5 cm;

Xem giải thích câu trả lời
© All rights reserved VietJack