25 CÂU HỎI
Cho các số phức z thỏa mãn |z – 2 – 4i| = 2. Gọi z1; z2 số phức có module lớn nhất và nhỏ nhất. Tổng phần ảo của hai số phức bằng?
A. 8i
B. 4
C. -8
D. 8
Gọi z1, z2 lần lượt là hai nghiệm của phương trình z2 - (1 + 3i) z – 2 + 2i = 0 và thỏa mãn | z1| > | z2|. Tìm giá trị của biểu thức
A. 0,5
B. 1,5
C. 1
D. 2
Gọi z1; z2 lần lượt là hai nghiệm của phương trình z2 – 4z + 7 = 0 .Tính giá trị của biểu thức
A. 1
B. 3
C. 0
D. 5
Cho các số phức z thỏa mãn |z2 + 4| = 2|z|. Kí hiệu M = max|z| và m = min|z|. Tìm module của số phức w = M + m?
Cho số phức z1; z2 thỏa mãn . Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của biểu thức | z1 - z2 | là?
A. 18
B.
C. 6
D.
Trong các số phức z thỏa mãn điều kiện |z – 1 – 2i| = 2, tìm số phức z có môđun nhỏ nhất.
Cho số phức z thỏa mãn . Giá trị nhỏ nhất và giá trị lớn nhất của modul z lần lượt là.
Cho số phức z thỏa mãn là một số thực. Hỏi giá trị nhỏ nhất của |z| gần với giá trị nào nhất?
A. 2,7
B. 2,8
C. 1,3
D. 1,4
Trong các số phức z thỏa mãn |z + 4 - 3i| + |z -8 - 5i| = 2. Tìm giá trị nhỏ nhất của |z – 2 – 4i| ?
A. 1/2
B. 5/2
C. 2
D. 1
Cho hai số phức z1 và z2 thỏa mãn | z1 + 2 z2| = 5 và |3 z1 - z2| = 3. Giá trị lớn nhất của P = | z1| + | z2| gần với số nguyên nào nhất?
A. 2
B. 3
C.4
D. 5
Cho số phức với m nguyên. Có bao nhiêu giá trị của m với 1≤ m≤ 50 để z là số thuần ảo?
A. 26.
B. 25.
C. 24.
D. 50.
Cho biểu thức L = 1- z+ z2- z3+ ...+ z2016- z2017 với . Biểu thức L có giá trị là
A. 1 - i.
B. 1 + i.
Cho 2 số phức ; với z = x+ yi.
Mệnh đề nào sau đây đúng?
A. z1 và z2 là số thuần ảo.
B. z2 là số thuần ảo.
C. z1 là số thuần ảo.
D. z1 và z2 là số thực.
Cho ; . Tính
Cho số phức . Tìm |z|max
A.1/2.
B. 0.
C. 1.
D. 2.
Cho số phức z thỏa mãn |z +1 +i | =| - 2i |. Tìm giá trị nhỏ nhất của |z|.
A.
B. 1
C.
D. 2
Tính tổng
A. 21008
B. -21008
C.1006
D. -21006
Cho số phức z thỏa mãn |z – 1 – 2i| = 2. Giá trị lớn nhất của T = |z| + |z – 3 – 6i| gần với giá trị nào nhất?
A. 6
B. 7
C. 8
D. 9
Cho số phức z thỏa mãn | z -3 - 4i| = .Tìm |z| để biểu thức: P = |z + 2|2 - |z – i|2 đạt giá trị lớn nhất?
B. 10
Tìm mô-đun của số phức w = b + ci biết số phức là nghiệm của phương trình z2 + 8bz + 64c = 0
A.
B. 7
C.
D.
Cho a,b,c là 3 số phức phân biệt khác 0 và modul của chúng bằng nhau .Nếu một nghiệm của phương trình az2 + bz + c = 0 có môđun bằng 1 thì khẳng định nào sau đây đúng.
A. c2 = ab
B. a2 = bc
C. b = ac
D. b2 = ac
Cho số phức z thỏa mãn là số thuần ảo. Tập hợp các điểm M biểu diễn số phức z là:
A. Đường tròn tâm O, bán kính R = 1.
B. Hình tròn tâm O, bán kính R = 1 (kể cả biên).
C. Hình tròn tâm O, bán kính R = 1 (không kể biên).
D. Đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0;1).
Cho số phức z thỏa mãn điều kiện |z – 3 + 4i| ≤ 2. Trong mặt phẳng Oxy tập hợp điểm biểu diễn số phức w = 2z + 1 - i là hình tròn có diện tích
A. S = 9π.
B. S = 12π.
C. S = 16π.
D. S = 25π.
Trong mặt phẳng phức Oxy, tâp hợp các điểm biểu diễn số phức z sao cho z 2 là số thuần ảo là hai đường thẳng d1 ; d2. Góc α giữa 2 đường thẳng d1 ; d2 là bao nhiêu?
A. α = 450.
B. α = 600.
C. α = 900.
D. α = 300.
Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 2| + |z – 2| = 5 trên mặt phẳng tọa độ là một
A. đường thẳng.
B. đường tròn.
C. elip.
D. hypebol.