25 CÂU HỎI
Phương trình là phương trình đường tròn có:
A. Tâm I( -2;3), bán kính R= 4.
B. Tâm I( 2;-3) , bán kính R= 4.
C. Tâm I( -2; 3) , bán kính R= 16.
D. Tâm I(2; -3) , bán kính R= 16.
Đường tròn (C) đi qua điểm A( 2;4) và tiếp xúc với các trục tọa độ có phương trình là:
A. (x-2) 2+ ( y-2) 2= 4 hoặc (x-10) 2+ (y-10) 2=100
B. (x+2) 2+ ( y-2) 2= 4 hoặc (x-2) 2+ ( y-2) 2= 4
C. (x-2) 2+ ( y+2) 2= 4 hoặc (x-2) 2+ ( y-2) 2= 4
D. Đáp án khác
Tìm đường tròn đi qua hai điểm A( 1; 3) và B( -2; 5) và tiếp xúc với đường thẳng d: 2x – y + 4= 0.
A. phương trình đường tròn là x2+ y2- 3x +2y – 8= 0.
B. phương trình đường tròn là x2+ y2-+3x - 2y – 8= 0.
C. phương trình đường tròn là x2+ y2- 4x +2y – 8= 0.
D. Tất cả sai.
Đường tròn (C) đi qua hai điểm A( 1;3) và B( 3;1) và có tâm nằm trên đường thẳng d: 2x –y + 7= 0 có phương trình là:
A. (x- 3) 2+ ( y- 7) 2= 64
B.( x+ 7) 2+ (y+ 7) 2= 164
C.(x- 3) 2+ (y- 6) 2= 16
D. (x+ 3) 2+ (y-2)2= 81
Đường tròn (C) tiếp xúc với trục tung tại điểm A( 0; -2) và đi qua điểm B( 4; -2) có phương trình là:
A.(x-2) 2+ (y+ 2) 2= 4
B.(x+ 2) 2+ (y-2) 2= 4
C. (x-3) 2+ (y-2) 2= 4
D. (x-3) 2+ (y +2) 2= 4
Phương trình đường tròn (C) có tâm I( 6;2) và tiếp xúc ngoài với đường tròn (C’) :x2 + y2 – 4x + 2y +1 =0 là:
A. x2 + y2 – 12x + 2y +1 =0
B. x2 + y2 – 8x - 4y +1 =0
C. x2 + y2 – 12x + 2y +31 =0
D. x2 + y2 – 12x - 4y +31 =0
Cho đường tròn (C): (x+ 1) 2 + (y-3)2 = 4 và đường thẳng d: 3x-4y + 5= 0. Phương trình của đường thẳng d’ song song với đường thẳng d và chắn trên (C) một dây cung có độ dài lớn nhất là:
A.3x – 4y + 1= 0
B. 3x - 4y +5 = 0
C.3x- 4y +15= 0
D.3x- 4y +10= 0
Cho đường tròn (C) : x2+ y2+ 4x – 6y +5= 0. Đường thẳng d đi qua A(3;2) và cắt (C) theo một dây cung dài nhất có phương trình là:
A.x+ y- 5= 0
B. x- y - 1= 0
C.x+ 2y – 7= 0
D.Đáp án khác
Cho đường tròn (C) : x2+ y2+ 4x – 6y – 36 = 0. Đường thẳng d đi qua A( 3;2) và cắt (C) theo một dây cung ngắn nhất có phương trình là:
A. 2x- y-1 =0
B. 5x+ y - 17= 0
C. 5x- y- 13= 0
D. x- 2y + 3= 0
Cho đường tròn (C): (x- 2)2+ (y-2) 2 = 9. Phương trình tiếp tuyến của (C) đi qua điểm A( 5; - 1) là:
A. x+ y+ 4 = 0 và x+ 5y= 0
B. x= 5 và y= -1
C. x+ 2y + 3= 0 và x= 5
D. x+ 3y +2 =0 và y= -1
Cho đường tròn (C) : x2+ y2+ 6x -2y + 5= 0 và đường thẳng d đi qua điểm A(- 4;2) , cắt (C) tại hai điểm M; N sao cho A là trung điểm của MN. Phương trình của đường thẳng d là:
A. x-y+ 6 = 0
B.2x+ 3y +2= 0
C.x+ 2y = 0
D. x+ y+2= 0
Cho hai điểm A( -2; 1) và B( 3;5) và điểm M thỏa mãn .Khi đó điểm M nằm trên đường tròn nào sau đây?
A. x2+ y2- x- 6y -1= 0
B. x2+ y2+ 2x- 6y- 1= 0
C.x2+ y2 – x+ 6y – 1= 0
D. Tất cả sai
Cho đường tròn (C) x2+ y2- 2x + 6y + 6= 0 và đường thẳng d: 4x -3y + 5= 0. Đường thẳng d’ song song với đường thẳng d và chắn trên (C) một dây cung có độ dài bằng có phương trình là:
A. 4x- 3y+ 8= 0
B.4x-3y- 8= 0 hoặc 4x – 3y -18= 0
C. 4x- 3y+ 10= 0
D. 4x + 3y + 8 = 0
Cho đường tròn (C) : (x- 3) 2+ (y +1) 2= 5. Phương trình tiếp tuyến của (C) song song với đường thẳng d : 2x+ y + 5 = 0 là:
A . 2x+ y= 0 và 2x+ y -10= 0
B. 2x+ y= 2= 0 và 2x+ y-8= 0
C. 2x+ y+ 10 =0 và 2x+ y= 0
D. 2x+ y-10= 0
Cho đường tròn (C) : x2+ y2 – 2x + 8y – 23= 9 và điểm M( 7; 4). Độ dài đoạn tiếp tuyến của (C) xuất phát từ M là:
A. 10
B.
C.
D.
Tìm phương trình chính tắc của Elip có trục lớn bằng 6 và tỉ số của tiêu cự với độ dài trục lớn bằng 1/3.
Tìm phương trình chính tắc của Elip có một đường chuẩn là x+ 4= 0 và một tiêu điểm là điểm (-1; 0) .
Tìm phương trình chính tắc của Elip có trục lớn gấp đôi trục bé và đi qua điểm (2;-2).
Cho Elip (E): một điểm M nằm trên (E). Lúc đó đoạn thẳng OM thoả mãn:
Biết Elip (E) có các tiêu điểm và đi qua Gọi N là điểm đối xứng với M qua gốc toạ độ. Chọn khẳng định đúng?
A.
B . M( 2;3)
C. F1( -2;0) và F2( 2;0)
D.NF1+ MF1= 8.
Lập phương trình chính tắc của Elip có tâm sai ,khoảng cách giữa hai đường chuẩn là
Trong mặt phẳng với hệ trục tọa đô, cho hai đường thẳng x+ y-1= 0 và 3x –y+ 5= 0. Hãy tìm diện tích hình bình hành có hai cạnh nằm trên hai đường thẳng đã cho, một đỉnh là giao điểm của hai đường thẳng đó và giao điểm của hai đường chéo là I(3;3).
A. 74
B. 55
C. 54
D. 65.
Trong mặt phẳng với hệ trục tọa độ Oxy; tam giác ABC có đỉnh A( 2;-3) ; B( 3;-2) và diện tích tam giác ABC bằng 3/2. Biết trọng tâm G của tam giác ABC thuộc đường thẳng d: 3x- y- 8= 0. Tìm tọa độ điểm C.
A. C( -1; 1) và C( 2 ; -3)
B. C( 1;-1)và C( -2 ; -10)
C. ( 1;-1) và C(2 ; -6)
D. C( 1;1) và C( 2 ; -3)
Trong mặt phẳng với hệ trục tọa đô Oxy , cho hai đường thẳng ∆1: x- y+ 1= 0 và ∆2: 2x + y-1 = 0 và điểm P (2;1) .Viết phương trình đường thẳng đi qua điểm P và cắt hai đường thẳng ∆1, ∆2 lần lượt tại hai điểm A: B sao cho P là trung điểm AB?
A. 4x – y- 7 = 0
B. x+ 4y- 4= 0
C. x- 4y-7= 0
D . 2x + y- 7= 0
Cho đường tròn (C) : x2+ y2- 8x + 6y +21= 0 và đường thẳng d: x+ y-1= 0.Xác định tọa độ các đỉnh A của hình vuông ABCD ngoại tiếp (C) biết
A. A( 2;-1) hoặc A( 6; -5)
B. A(1; -2) hoặc A( 3;-4)
C. A( 1;2) hoặc A(6;5)
D. A(-2; 1) hoặc A( -1; 2)