15 CÂU HỎI
Hoàn thành định nghĩa của tam giác cân:
Tam giác cân là tam giác:
A. Có hai đường cao bằng nhau;
B. Có hai đường trung tuyến bằng nhau;
C. Có hai cạnh bằng nhau;
D. Có hai tia phân giác trong bằng nhau.
Cho ∆ABC như hình bên. Tìm số đo x:
A. x = 100°;
B. x = 80°;
C. x = 90°;
D. x = 40°.
Khẳng định nào sau đây sai?
A. Tam giác cân có một góc bằng 60° là tam giác đều;
B. Tam giác vuông có một góc nhọn bằng 45° là tam giác vuông cân;
C. Trong một tam giác cân, hai góc ở đáy bằng nhau;
D. Tam giác cân không thể là tam giác tù.
Cho tam giác ABC cân đỉnh A có các đường trung tuyến BD, CE. Tam giác nào dưới đây là tam giác cân?
A. ∆ABD;
B. ∆BCE;
C. ∆ADE;
D. ∆BDE.
Cho ∆ABC có AB < AC. Ở phía ngoài ∆ABC, vẽ ∆ABD và ∆ACE vuông cân tại A. So sánh AD và AE.
A. AD < AE;
B. AD > AE;
C. AD = AE;
D. Không thể so sánh được.
Tìm số đo ở hình bên:
A.
B.
C.
D.
Cho hình bên dưới.
Độ dài cạnh EF bằng:
A. 2,5 cm;
B. 6 cm;
C. 5 cm;
D. 10 cm.
Cho ∆PQR có , . ∆PQR là tam giác gì?
A. Tam giác đều;
B. Tam giác vuông;
C. Tam giác cân;
D. Tam giác vuông cân.
Cho ∆ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Hỏi ∆ADE là tam giác gì?
A. Tam giác cân;
B. Tam giác đều;
C. Tam giác vuông cân;
D. Tam giác vuông.
Cho ∆ABC đều. Lấy điểm M, N trên các cạnh AB, AC sao cho AM = AN. ∆AMN là tam giác gì?
A. Tam giác cân tại A;
B. Tam giác cân tại M;
C. Tam giác cân tại N;
D. Tam giác đều.
Cho hình vẽ bên.
Số đo bằng:
A. 45°;
B. 60°;
C. 90°;
D. 120°.
Cho ∆ABC cân tại A có cạnh bên bằng 3 cm. Gọi D là một điểm thuộc cạnh đáy BC. Qua D, kẻ các đường thẳng song song với các cạnh bên, chúng cắt AB và AC theo thứ tự tại F và E. Tổng DE + DF bằng:
A. 1,5 cm;
B. 3 cm;
C. 4,5 cm;
D. 6 cm.
Cho ∆ABC cân tại A. Vẽ đường phân giác trong của và đường phân giác ngoài của , chúng cắt nhau tại I. Khẳng định nào sau đây đúng?
A. ∆ABI cân tại B;
B. AI // BC;
C. ∆ABI cân tại I;
D. ∆ABI vuông cân tại I.
Cho ∆ABC cân tại A, tia phân giác trong của cắt BC tại D. Khẳng định nào dưới đây sai?
A. D là trung điểm BC;
B. ;
C. ∆ADB = ∆ADC;
D. .
Cho ∆ABC vuông tại A có . Kẻ AH ⊥ BC tại H và tia phân giác AD của (D ∈ BC). Trên cạnh AC lấy điểm E sao cho AE = AH. Trên tia đối của tia HA lấy điểm F sao cho HF = EC. Khẳng định nào sau đây đúng nhất?
A. ∆ADH = ∆ADE;
B. DE ⊥ AC;
C. ∆ACF đều;
D. Cả A, B, C đều đúng.