vietjack.com

20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 16. Công thức tính góc trong không gian có đáp án
Quiz

20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 16. Công thức tính góc trong không gian có đáp án

A
Admin
20 câu hỏiToánLớp 12
20 CÂU HỎI
1. Nhiều lựa chọn

I. Nhận biết

Trong hệ tọa độ \[Oxyz\], góc giữa đường thẳng \[Ox\] và đường thẳng \[Oy\] là

A. \[0^\circ.\]

B. \[90^\circ.\]

C. \[45^\circ.\]

D. \[30^\circ.\]

Xem giải thích câu trả lời
2. Nhiều lựa chọn

Trong hệ tọa độ \[Oxyz\], góc giữa đường thẳng \[Ox\] và mặt phẳng \[\left( {Oxy} \right)\] là

A. \[0^\circ.\]

B. \[90^\circ.\]

C. \[45^\circ.\]

D. \[30^\circ.\]

Xem giải thích câu trả lời
3. Nhiều lựa chọn

Trong hệ tọa độ \[Oxyz\], cho hai đường thẳng \[{\Delta _1}\] và \[{\Delta _2}\] có vectơ chỉ phương lần lượt là \[\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right)\], \[\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\]. Khi đó, khẳng định nào sau đây là sai?

A. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \cos \left| {\left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)} \right|.\]

B. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}.\]

C. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}}.\]

D. \[\left( {{\Delta _1},{\Delta _2}} \right) = \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)\] hoặc \[\left( {{\Delta _1},{\Delta _2}} \right) = 180^\circ - \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right).\]

Xem giải thích câu trả lời
4. Nhiều lựa chọn

Trong hệ tọa độ \[Oxyz\], cho đường thẳng \[\Delta :\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{2}.\] Tính \[{\mathop{\rm co}\nolimits} \sin \] của góc giữa đường thẳng \[\Delta \] và trục \[Ox\].

A. \[\frac{2}{3}.\]

B. \[ - \frac{2}{3}.\]

C. \[\frac{1}{3}.\]

D. \[0.\]

Xem giải thích câu trả lời
5. Nhiều lựa chọn

Trong không gian \[Oxyz\], cho hai đường thẳng \[{\Delta _1}\] và \[{\Delta _2}\] có vectơ chỉ phương lần lượt là \[\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right)\], \[\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\]. Gọi \[\varphi \] là góc giữa hai đường thẳng \[{\Delta _1}\] và \[{\Delta _2}.\] Xét các khẳng định sau:

a) \[\cos \varphi = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}.\]

b) \[\cos \varphi = \frac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}.\]

c) \[{\Delta _1} \bot {\Delta _2} \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0.\]

d) \[\sin \varphi = \frac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}.\]

Số khẳng định đúng trong các khẳng định trên là

A. 1.

B. 0.

C. 2.

D. 3.

Xem giải thích câu trả lời
6. Nhiều lựa chọn

II. Thông hiểu

Cho hai đường thẳng \[{\Delta _1}:\frac{{x - 1}}{3} = \frac{y}{2} = \frac{{z + 1}}{1},{\rm{ }}{\Delta _2}:\frac{x}{{ - 1}} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 1}}\]. Góc giữa \[{\Delta _1}\] và \[{\Delta _2}\] là

A. \[0^\circ.\]

B. \[90^\circ.\]

C. \[45^\circ.\]

D. \[30^\circ.\]

Xem giải thích câu trả lời
7. Nhiều lựa chọn

Tính góc tạo bởi đường thẳng \[d:\frac{{x - 2}}{1} = \frac{{y - 5}}{2} = \frac{{z + 1}}{{ - 1}}\] và mặt phẳng \[\left( \alpha \right):2x + y + z - 1 = 0.\]

A. \[0^\circ.\]

B. \[90^\circ.\]

C. \[45^\circ.\]

D. \[30^\circ.\]

Xem giải thích câu trả lời
8. Nhiều lựa chọn

Trong hệ tọa độ \[Oxyz\], cho mặt phẳng \[\left( P \right):2x - y - z - 3 = 0\] và \[\left( Q \right):x - z - 2 = 0\]. Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng

A. \[0^\circ.\]

B. \[90^\circ.\]

C. \[45^\circ.\]

D. \[30^\circ.\]

Xem giải thích câu trả lời
9. Nhiều lựa chọn

Trong hệ tọa độ \[Oxyz\], cho ba điểm \[M\left( {1;0;0} \right)\], \[N\left( {0;1;0} \right)\] và \[P\left( {0;0;1} \right)\]. Cosin của góc giữa hai mặt phẳng \[\left( {MNP} \right)\] và \[\left( {Oxy} \right)\] bằng

A. \[\frac{1}{{\sqrt 3 }}.\]

B. \[\frac{1}{{\sqrt 5 }}.\]

C. \[\frac{2}{{\sqrt 5 }}.\]

D. \[\frac{1}{3}.\]

Xem giải thích câu trả lời
10. Nhiều lựa chọn

Hãy tìm giá trị thực của \[m\] để góc giữa hai đường thẳng \[d:\left\{ \begin{array}{l}x = 1 + t\\y = - \sqrt 2 t\\z = 1 + t\end{array} \right.,{\rm{ }}t \in \mathbb{R}\] và \[d':\left\{ \begin{array}{l}x = 1 + t'\\y = - \sqrt 2 t'\\z = 1 + mt'\end{array} \right.,{\rm{ }}t' \in \mathbb{R}\] bằng \[60^\circ .\]

A. \[m = 1.\]

B. \[m = - 1.\]

C. \[m = \frac{1}{2}.\]

D. \[m = - \frac{1}{2}.\]

Xem giải thích câu trả lời
11. Nhiều lựa chọn

Trong không gian \[Oxyz\], cho đường thẳng \[{d_1}:\left\{ \begin{array}{l}x = 1\\y = 2 - t\\z = 3 + 2t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 4 + t\\y = 1 + mt.\\z = 2 - t\end{array} \right.\] Tìm \[m\] để cosin góc giữa hai đường thẳng bằng \[\frac{{\sqrt 5 }}{5}.\]

A. \[m = 2.\]

B. \[m = - 2.\]

C. \[m = \frac{1}{2}.\]

D. \[m = - \frac{1}{2}.\]

Xem giải thích câu trả lời
12. Nhiều lựa chọn

Trong không gian \[Oxyz\], cho điểm \[A\left( {0;2;2} \right)\]. Góc giữa đường thẳng \[OA\] và trục \[Oy\] bằng

A. \[60^\circ.\]

B. \[90^\circ.\]

C. \[45^\circ.\]

D. \[30^\circ.\]

Xem giải thích câu trả lời
13. Nhiều lựa chọn

Trong không gian \[Oxyz\], hai đường thẳng \[{d_1}:\frac{{x - 2}}{1} = \frac{{y + 1}}{{\sqrt 2 }} = \frac{{z - 3}}{1}\] và \[{d_2}:\frac{{x + 5}}{1} = \frac{{y + 3}}{{\sqrt 2 }} = \frac{{z - 5}}{m}\] tạo với nhau góc \[60^\circ \], giá trị của tham số \[m\] bằng

A. \[m = - 1.\]

B. \[m = 1.\]

C. \[m = \frac{1}{2}.\]

D. \[m = \frac{{\sqrt 3 }}{2}.\]

Xem giải thích câu trả lời
14. Nhiều lựa chọn

Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):x - y + 2z + 1 = 0\]và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{{ - 1}}\]. Xét các mệnh đề sau:

A. Góc giữa \[\left( P \right)\] và \[d\] là một góc nhọn.

B. \[d \bot \left( P \right).\]

C. \[d\parallel \left( P \right).\]

D. \[\left( {d;\left( P \right)} \right) = 30^\circ .\]

Xem giải thích câu trả lời
15. Nhiều lựa chọn

Tính góc \[\alpha \] giữa hai đường thẳng \[d:\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + t\\z = 3\end{array} \right.\] và \[d':\left\{ \begin{array}{l}x = 1 - t'\\y = 2\\z = - 2 + t'.\end{array} \right.\]

A. \[60^\circ.\]

B. \[90^\circ.\]

C. \[45^\circ.\]

D. \[30^\circ.\]

Xem giải thích câu trả lời
16. Nhiều lựa chọn

III. Vận dụng

Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):3x + 4y + 5z + 2 = 0\] và đường thẳng \[d\] là giao tuyến của hai mặt phẳng \[\left( \alpha \right):x - 2y + 1 = 0\] và \[\left( \beta \right):x - 2y - 3z = 0\]. Hãy tính số đo góc \[\alpha \] giữa \[d\] và \[\left( P \right)\].

A. \[60^\circ.\]

B. \[90^\circ.\]

C. \[45^\circ.\]

D. \[30^\circ.\]

Xem giải thích câu trả lời
17. Nhiều lựa chọn

Tìm tất cả các mặt phẳng \[\left( \alpha \right)\] chứa đường thẳng \[d:\frac{x}{1} = \frac{y}{{ - 1}} = \frac{z}{{ - 3}}\] và tạo với mặt phẳng \[\left( P \right):2x - z + 1 = 0\] góc \[45^\circ .\]

A. \[\left( \alpha \right):3x + z = 0.\]

B. \[\left( \alpha \right):x - y - 3z = 0.\]

C. \[\left( \alpha \right):x + 3z = 0.\]

D. \[\left( \alpha \right):3x + z = 0\] hoặc \[\left( \alpha \right):8x + 5y + z = 0.\]

Xem giải thích câu trả lời
18. Nhiều lựa chọn

Trong không gian \[Oxyz\], cho hai mặt phẳng \[\left( P \right):x - y - 6 = 0\] và \[\left( Q \right)\]. Biết rằng điểm \[H\left( {2; - 1; - 2} \right)\] là hình chiếu vuông góc của gốc tọa độ \[O\left( {0;0;0} \right)\] xuống mặt phẳng \[\left( Q \right)\]. Số đo góc giữa hai mặt phẳng \[\left( P \right)\] và mặt phẳng \[\left( Q \right)\] bằng

A. \[60^\circ.\]

B. \[90^\circ.\]

C. \[45^\circ.\]

D. \[30^\circ.\]

Xem giải thích câu trả lời
19. Nhiều lựa chọn

Trong không gian \[Oxyz\], cho hình chóp \[S.ABC\] có ba điểm \[S\left( {0;0;3} \right)\], \[A\left( {0;0;0} \right)\], \[B\left( {1;0;0} \right)\], \[C\left( {0;2;0} \right)\] và mặt phẳng \[\left( P \right):x + y + z - 3 = 0\]. Xét các mệnh đề sau:

a) Cosin góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[0.\]

b) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[\frac{2}{7}.\]

c) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( P \right)\] bằng \[\frac{{10\sqrt 3 }}{{21}}.\]

d) Góc giữa hai mặt phẳng \[\left( {SAC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[90^\circ .\]

Số mệnh đề đúng là

A. 1.

B. 2.

C. 3.

D. 0.

Xem giải thích câu trả lời
20. Nhiều lựa chọn

Trong không gian \[Oxyz\] cho hình chóp \[S.ABCD\] có \[S\left( {0;0;\frac{{a\sqrt 3 }}{2}} \right),\]\[A\left( {\frac{a}{2};0;0} \right),\]\[B\left( { - \frac{a}{2};0;0} \right)\], \[C\left( { - \frac{a}{2};a;0} \right)\],\[D\left( {\frac{a}{2};a;0} \right)\] với \[a > 0\]. Tính góc giữa đường thẳng \[SD\] và mặt phẳng \[\left( {SAC} \right)\]. (Kết quả làm tròn đến hàng đơn vị của độ).

A. \[28^\circ \].

B. \[38^\circ \].

C. \[26^\circ \].

D. \[31^\circ \].

Xem giải thích câu trả lời
© All rights reserved VietJack