30 CÂU HỎI
Cho đa giác đều có 15 đỉnh. Gọi M là tập tất cả các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên một tam giác thuộc tập M, tính xác suất để tam giác được chọn là một tam giác cân nhưng không phải là tam giác đều.
A.
B.
C.
D.
Có hai hộp cùng chứa các quả cầu. Hộp thứ nhất có 7 quả cầu đỏ, 5 quả cầu xanh. Hộp thứ hai có 6 quả cầu đỏ, 4 quả cầu xanh. Từ mỗi hộp lấy ra ngẫu nhiên 1 quả cầu. Tính xác suất để 2 quả cầu lấy ra cùng màu đỏ.
A.
B.
C.
D.
Có bao nhiêu biển đăng kí xe gồm 6 kí tự trong đó 3 kí tự đầu tiên là 3 chữ cái (sử dụng trong 26 chữ cái ), ba kí tự tiếp theo là ba chữ số. Biết rằng mỗi chữ cái và mỗi chữ số đều xuất hiện không quá một lần:
A. 13232000.
B. 12232000.
C. 11232000.
D. 10232000.
Gieo 2 con súc sắc 6 mặt. Tính xác suất để tổng số chấm xuất hiện bằng 12
A.
B.
C.
D.
Trong trận đấu bóng đá giữa 2 đội Real madrid và Barcelona, trọng tài cho đội Barcelona được hưởng một quả Penalty. Cầu thủ sút phạt sút ngẫu nhiên vào 1 trong bốn vị trí 1, 2, 3, 4 và thủ môn bay người cản phá ngẫu nhiên đến 1 trong 4 vị trí 1, 2, 3, 4 với xác suất như nhau (thủ môn và cầu thủ sút phạt đều không đoán được ý định của đối phương). Biết nếu cầu thủ sút và thủ môn bay cùng vào vị trí 1 (hoặc 2) thì thủ môn cản phá được cú sút đó, nếu cùng vào vị trí 3 (hoặc 4) thì xác suất cản phá thành công là 50%. Tính xác suất của biến cố “cú sút đó không vào lưới”?
A.
B.
C.
D.
Bình A chứa 3 quả cầu xanh, 4 quả cầu đỏ và 5 quả cầu trắng. Bình B chứa 4 quả cầu xanh, 3 quả cầu đỏ và 6 quả cầu trắng. Bình C chứa 5 quả cầu xanh, 5 quả cầu đỏ và 2 quả cầu trắng. Từ mỗi bình lấy một quả cầu. Có bao nhiêu cách lấy để cuối cùng được 3 quả có màu giống nhau.
A. 180
B. 150
C. 120
D. 60
Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca, tính xác suất để trong 4 người được chọn có ít nhất 3 nữ ?
A.
B.
C.
D.
Cho hai đường thẳng song song d1; d2. Trên d1 có 6 điểm phân biệt được tô màu đỏ. Trên d2 có 4 điểm phân biêt được tô màu xanh. Xét tất cả các tam giác được tạo thành khi nối các điểm đó với nhau. Chọn ngẫu nhiên một tam giác, khi đó xác suất để thu được tam giác có hai đỉnh màu đỏ là:
A.
B.
C.
D.
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có sáu chữ số và thoả mãn điều kiện: sáu chữ số của mỗi số là khác nhau và chữ số hàng nghìn lớn hơn 2?
A. 720 số.
B. 360 số.
C. 288 số.
D. 240 số.
Xác suất bắn trúng mục tiêu của một vận động viên khi bắn một viên đạn là 0,6. Người đó bắn hai viên đạn một cách độc lập. Xác suất để một viên trúng mục tiêu và một viên trượt mục tiêu là
A. 0,45.
B. 0,4.
C. 0,48.
D. 0,24.
Số cách chọn 3 học sinh trong 6 học sinh và xếp thành một hàng dọc bằng
A. 720
B. 120
C. 20
D. 40
Từ tập A = {1;2;3;4;5;6;7;8;9} có thể lập được tất cả bao nhiêu số tự nhiên chia hết cho 3 và ba chữ số phân biệt
A. 45
B. 99
C. 150
D. 180
Đội dự tuyển học sinh giỏi Toán của tỉnh A có n học sinh n = 9 trong đó có 2 học sinh nữ, tham gia kì thi để chọn đội tuyển chính thức gồm 4 người. Biết xác suất trong đội tuyển chính thức cả 2 học sinh nữ gấp 2 lần xác suất trong đội tuyển chính thức không có học sinh nữ nào. Tìm n?
A. n = 9
B. n = 7
C. n = 5
D. n = 11
Có 10 vị nguyên thủ Quốc gia được xếp ngồi vào một dãy ghế dài (Trong đó có ông Trum và ông Kim). Có bao nhiêu cách xếp sao cho hai vị ngày ngồi cạnh nhau?
A. 9!.2
B. 10! – 2
C. 8!.2
D. 8!
Giải bóng chuyền VTV cup gồm 9 đội bóng trong đó có 6 đội nước ngoài và 3 đội của Việt Nam. Ban tổ chức cho bốc thăm ngẫu nhiên để chia thành 3 bảng A, B, C và mỗi bảng có ba đội. Tính xác suất để 3 đội bóng của Việt Nam ở 3 bảng khác nhau.
A.
B.
C.
D.
Từ các chữ số 0, 1, 2, 3, 4 lập được bao nhiêu số có năm chữ số khác nhau từng đôi một?
A. 2500
B. 3125
C. 96
D. 120
Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 6 học sinh đi lao động, trong đó 2 học sinh nam?
A.
B.
C.
D.
Một tổ có 5 học sinh nữ và 6 học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên một học sinh của tổ đó đi trực nhật?
A. 20
B. 11
C. 30
D. 10
Một hộp đựng 5 bi đỏ và 4 bi xanh. Có bao nhiêu cách lấy 2 bi có đủ cả 2 màu?
A. 20.
B. 16.
C. 9.
D. 36.
Một tổ có 5 học sinh nữ và 6 học sinh nam. Số cách chọn ngẫu nhiên 5 học sinh của tổ trong đó có cả học sinh nam và học sinh nữ là
A. 545
B. 462
C. 455
D. 456
Một con súc sắc không cân đối, có đặc điểm mặt sáu chấm xuất hiện nhiều gấp hai lần các mặt còn lại. Gieo con súc sắc đó hai lần. Xác suất để tổng số chấm trên mặt xuất hiện trong hai lần gieo lớn hơn hoặc bằng 11 bằng
A.
B.
C.
D.
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số chẵn, mỗi số có 5 chữ số khác nhau trong đó có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau?
A. 468
B. 280
C. 310
D. 290
Cho đa giác đều n đỉnh, và . Tìm n biết rằng đa giác đã cho có 135 đường chéo
A. n = 15
B. n = 27
C. n = 8
D. n = 18
Tại một buổi lễ có 13 cặp vợ chồng tham dự. Mỗi ông chồng bắt tay một lần với mọi người trừ vợ mình. Các bà vợ không ai bắt tay với nhau. Hỏi có bao nhiêu cái bắt tay.
A. 78
B. 185
C. 234
D. 312
Thầy Bình đặt lên bàn 30 tấm thẻ đánh số từ 1 đến 30. Bạn An chọn ngẫu nhiên 10 tấm thẻ. Tính xác suất để trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn, trong đó chỉ có một tấm mang số chia hết cho 10.
A.
B.
C.
D.
Xét tập hợp A gồm tất cả các số tự nhiên có 5 chữ số khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để số được chọn có chữ số đứng sau lớn hơn chữ số đứng trước (tính từ trái sang phải).
A.
B.
C.
D.
Một đề thi trắc nghiệm gồm 50 câu, mỗi câu có 4 phương án trả lời, trong đó chỉ có 1 phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Tính xác suất để thí sinh đó được 6 điểm.
A. 1 – 0,2520.0,7530
B. 0,2530.0,7520
C. 0,2520.0,7530
D.
Có 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách sắp xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau?
A. 345600
B. 518400
C. 725760
D. 103680
Chi đoàn lớp 12A có 20 đoàn viên trong đó có 12 đoàn viên nam và 8 đoàn viên nữ. Tính xác suất khi chọn 3 đoàn viên có ít nhất 1 đoàn viên nữ.
A.
B.
C.
D.
Cho 6 chữ số 4, 5, 6, 7, 8, 9. Hỏi có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau được lập thành từ 6 chữ số đó?
A. 120
B. 216
C. 180
D. 256